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Prostate cancer is the most commonly diagnosed non-skin cancer in men in most western
countries. Despite the high morbidity and mortality from prostate cancer, its etiology remains
obscure. Although compelling laboratory data suggest a role for androgens in prostate carci-
nogenesis, most epidemiologic data on humans are inconclusive. To provide insights and
directions for future epidemiologic research on hormones and prostate cancer, this review
focuses on current perspectives of serum-based studies and polymorphisms in relevant
hormone-related genes. We highlight the importance of methodologic studies and investiga-
tions of hormone levels in the prostatic tissue to help clarify the often-contradictory data on
serologic studies. We recommend careful analysis and cautious interpretation of studies of
genetic markers, including repeats and single nucleotide polymorphisms (SNPs), as false
positive and negative results may arise in many current and future studies with limited
statistical power and non-representative samples from the population. The review also high-
lights the reasons to perform functional analyses of SNPs, a critical and often under-
appreciated component of molecular epidemiologic investigations.

The time is ripe for large-scale multidisciplinary investigations that incorporate molecular
genetics, biochemistry, histopathology, and endocrinology into traditional epidemiologic
studies. Such collaboration will lead to a deeper understanding of the etiologic pathways of
prostate cancer, ultimately yielding better preventive, diagnostic, and therapeutic strategies.
Prostate 52: 213–235, 2002. Published 2002 Wiley-Liss, Inc.{
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INTRODUCTION

There is a striking difference in prostate cancer
risk between different racial and ethnic groups, with
African American men having reported incidence
rates that are 40- to 60-fold higher than those reported
for Asian men [1,2]. Although the reasons for this large
disparity in risk are mostly unclear, population differ-
ences in androgen levels have been implicated as a
possible explanation.

Abundant biological data suggest that androgens
play an important role in the development of prostate
cancer. For example, the growth and maintenance of the
prostate are dependent on androgens, prostate cancer

regresses after androgen ablation or anti-androgen
therapy, and administration of testosterone induces
prostate tumors in laboratory animals [3–5]. However,
epidemiologic studies addressing the role of andro-
gens in prostate cancer have produced conflicting data
[6,7], due, in part to methodologic limitations, includ-
ing intra-subject and intra-laboratory variations. With
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the development of molecular endocrinology, epide-
miologic studies have recently begun investigating the
effects of genetic polymorphisms in hormone-related
genes on prostate cancer risk.

This review summarizes current perspectives on
androgen metabolic pathways, epidemiologic data on
androgenic and non-androgenic hormones and pros-
tate cancer, and polymorphisms of genes involved in
androgen metabolism and regulation. Using the cur-
rent state of knowledge, we attempt to provide
insights and directions for future research on hor-
mones and prostate cancer.

CURRENTPERSPECTIVES

Biosynthesis andMetabolismofAndrogens in
Circulation

Androgens are steroid hormones that induce the
differentiation and maturation of the male reproduc-
tive organs and the development of male secondary
sex characteristics. In men, androgens are formed
primarily in the testes and the adrenal gland, and to a
lesser extent in peripheral tissues, such as the prostate
and skin. Formation of androgens in the endocrine
glands occurs by two well-characterized biosynthesic
pathways, D4 and D5, each of which begins with the
precursor (Figure 1). Testosterone, the principal an-
drogen in circulation, and DHT, the primary nuclear
androgen and the most potent androgen, are the two
most important androgens in adult males. In blood,
roughly 44% of testosterone is bound with high affi-
nity to sex hormone-binding globulin (SHBG), 54% is
bound with low affinity to albumin, and only 1–2% of
testosterone exists in a free (unbound) state. About
25% of the DHT in the circulation is secreted by the
testes, while most (65–75%) arises from conversion of
testosterone in peripheral tissue in a reaction cata-
lyzed by the enzyme 5a-reductase or from circulating
inactive androgens, such as androstenedione, dehydro-
epiandrosterone (DHEA), and DHEA sulfate (DHEAS).
In humans, two 5a-reductase isoenzymes have been
identified. The type 1 enzyme (encoded by the SRD5A1
gene) is expressed mostly in skin and hair, whereas
the type 2 enzyme (encoded by the SRD5A2 gene) is
localized primarily in androgen target tissue, includ-
ing genital skin and the prostate [8].

AndrogenMetabolismWithin the ProstateGland

In men, the prostate is a major site of non-testicular
production of DHT, which is derived primarily from
testosterone. Free testosterone in circulation enters the
prostate cells by passive diffusion, whereas albumin-
bound testosterone, because of its low affinity for
albumin, can disassociate from albumin, allowing it to

enter prostatic cells. The recent identification and
characterization of a SHBG receptor in the plasma
membranes of prostate cells has led to the suggestion
that SHBG-bound testosterone may also enter prostate
cells [9,10].

Figure 2 shows the metabolic pathways of andro-
gens within the prostate gland. Within the prostate,
testosterone is converted irreversibly to DHT by 5a-
reductase type 2. DHT can also be formed from andro-
stenedione by a two-step reduction reaction, in which
5a-reductase converts androstenedione to 5a-andros-
tane-3,17-dione (androstanedione), which is then con-
verted to DHT via 17b-hydroxysteroid dehydrogenase
(encoded by the HSD17B gene) in a reversible reaction.
DHT can further undergo a reversible reduction
reaction to form either 5a-androstane-3a, 17b-diol
(3a-diol) via the enzyme, 3a-hydroxysteroid dehy-
drogenase (encoded by the HSD3A gene), or 5a-
androstane-3b,17b-diol (3b-diol) via the enzyme
3b-hydroxysteroid dehydrogenase (encoded by the
HSD3B gene). Through the action of glucuronyl
transferase, 3a-diol and 3b-diol can be irreversibly
conjugated to yield 3a-androstanediol glucuronide
(3a-diol G), a terminal metabolite of DHT, and 3b-diol
G, respectively. Inactivation of DHT in the prostate by
reduction to either 3a- or 3b-diol is an important
determinant of intracellular DHT concentration and
a potential modulator of androgenic activity in the
prostate gland.

The concentration of DHT in serum is only one-
tenth that of testosterone, whereas the concentration
of DHT in prostatic tissue is several times higher
than that of testosterone, suggesting that DHT levels
in tissue are important in prostate development and
tumorigenesis. However, it is difficult to measure
tissue levels of testosterone and DHT in epidemiologic
studies, and thus, the concentration of 3a-diol G in
serum is commonly used as an indirect measure of 5a-
reductase enzymatic activity or, more generally, of
intraprostatic androgenicity. The concentration of 3a-
diol G in serum correlates well with 5a-reductase
activity in genital skin [11,12]. However, serum levels
of 3a-diol G are generally thought to reflect enzyme
activities of both types 1 and 2 of steroid 5a-reductase.
Recent data from studies with finasteride, an 5a-
reductase type 2 inhibitor, suggest that serum levels of
3a-diol G may predominantly reflect the type 2 5a-
reductase activity, because serum levels of DHT and
3a-diol G decrease concomitantly in men treated with
finasteride [13].

AndrogenicActionWithin the ProstateGland

The functions of DHT and testosterone in the
prostate are mediated by the androgen receptor (AR)
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protein (Figure 3). Within the prostate, DHT binds to
the AR to form an intracellular DHT-AR complex,
which then binds to the androgen-response elements
in the prostate DNA, ultimately inducing DNA syn-

thesis and cellular proliferation. An array of data
supports the hypothesis that the AR plays a key role in
androgenic action within the prostate gland. Although
the tissue concentration of DHT necessary to initiate a

Fig. 1. Biosynthesis and metabolism of androgens. Abbreviations: DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone
sulfate.

Fig. 2. Metabolismof androgenwithin theprostate gland. Abbreviations:DHT, dihydrotestosterone; 3a-Androstanediol, 5a -androstane-
3a, 17b-diol; 3b-Androstanediol, 5a -androstane-3b, 17b-diol. The dotted line with arrow indicates inactivation of DHT to a less potent
androgen.
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cascade of androgenic action in the normal prostate
is not known, it has been shown that only a minute
amount of androgen (mostly from the conversion of
adrenal androgen to DHT) is required to trigger an-
drogenic action in prostate cancer patients who have
undergone androgen ablation treatment, perhaps
because such patients have mutant androgen recep-
tors that are hypersensitive to low levels of serum
androgens [14,15]. Experimental data have also shown
that in the absence of androgen, non-androgenic hor-
mones (including estradiol, vitamin D, and insulin-
like growth factors [IGFs]) in combination with ARs
can trigger androgenic action [16,17]. The AR protein is
encoded by the AR gene located on the X chromosome.
The activity of the AR protein is directly related to the
length of the CAG repeat in the AR gene [18] and is
further enhanced by the AR coregulatory and asso-
ciated proteins (AR coactivators). In vitro studies have
shown that certain AR coactivators, such as ARA54,
ARA55, ARA70, ARA160, p160, BRCA1, AIB1, and
CBP (cortisol binding protein), can enhance AR
transcriptional activity several-fold [19–21].

Thus, androgenic action within the prostate is deter-
mined not only by androgen concentration but also by
several other factors, such as the levels of the androgen
receptor and its coactivators, the presence of growth
factors, and perhaps other factors yet to be identified
(Figure 3). However, no epidemiologic studies have
assessed tissue hormone levels or androgenic action
within the prostate directly, due, in part, to the diffi-
culty in collecting prostate tissue from control subjects
in case-control studies, or from men at baseline in
cohort studies, to measure tissue hormones, steroido-
genic enzymes, the AR, or AR coactivators.

Androgens and Prostate Cancer:
Epidemiologic Evidence

Studies of androgens in the circulation. Most epi-
demiologic studies have compared the serum levels
of androgens in prostate cancer cases with those in
healthy subjects in either case-control or prospective
studies. In case-control studies, blood samples from
cancer patients are collected after diagnosis (usually
before treatment) and assayed for hormone levels.
Thus, the presence of disease may have an effect on
circulating levels of hormone. Moreover, these types
of cross-sectional studies make it difficult to establish
a temporal relationship between androgens and
prostate cancer. In contrast, prospective studies,
such as nested case-control studies, compare serum
levels of hormones in pre-diagnostic blood samples
from incident cases identified in a prospective follow-
up to those of healthy controls selected from the
same cohort. Because blood samples of the case
subjects are usually collected several years before
the diagnosis of cancer, potential effects of disease
on the measurement of hormones are presumably
minimized.

To date, twelve prospective studies have evaluated
the role of serum hormones in prostate cancer (Table I).
In most of these studies, the serum concentrations of
testosterone and DHT were measured to assess the
role of androgens in prostate cancer [22–33]. Although
only one study reported a statistically significant asso-
ciation between serum levels of testosterone and pros-
tate cancer [28], several studies found a suggestive, but
statistically non-significant, association between pros-
tate cancer and the serum levels of testosterone and
DHT [22,24]. In those latter studies, the serum levels
of testosterone and DHT were expressed as the ratio
of testosterone concentration to DHT concentration,
which is used as an indirect measure of steroid 5a-
reductase type 2 activity and suggests a role for the
5a-reductase type 2 enzyme [22,24]. More recent
studies have found no association between prostate
cancer risk and the serum level of 3a-diol G, which is
considered a surrogate marker for steroid 5a-reduc-
tase activity in the prostate gland [27–33]. In most
epidemiologic studies, the failure to show an associa-
tion between androgen levels and prostate cancer risk
may be due, in part, to methodologic limitations that
include difficulty in making reliable measurements of
circulating hormone levels in an epidemiologic set-
ting. Moreover, the statistical power of some studies is
often limited by small sample size, by the observation
of relatively small differences (usually 10–15%) be-
tween cases and controls, or by fairly large intra- and
inter-assay laboratory variations in serum hormone
assays [34].

Fig. 3. Androgenic action within the prostate. Androgenic
action within the prostate is defined by both the concentration of
dihydrotestosterone (DHT) and several other factors, including
the level of androgen receptor, androgen receptor coactivators,
andgrowth factors. Abbreviations:T, testosterone; DHT, dihydro-
testosterone; AR, androgen receptor; ARA, androgen receptor
coactivator.
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In addition to these methodologic limitations, it is
unclear whether circulating levels of androgens reflect
androgenic action within the prostate gland, because
DHT in the prostate gland mainly comes from the con-
version of testosterone. If serum levels of androgens
do not reflect the levels of DHT in tissue, it is difficult
to interpret results from serologic studies. Also unclear
is whether cumulative exposure to androgens over
a lifetime or exposure at certain points in life is
more relevant in prostate carcinogenesis. It has been
suggested that hormonal changes during the prenatal
and peri-pubertal periods may be of etiologic impor-
tance, because prostate development, including the
substantial differentiation of epithelial cells, occurs at
these critical time periods [35]. If early exposure to
androgens is most critical for the development of
prostate cancer, then most epidemiologic studies that
measure circulating levels of hormones in elderly
study subjects, who are typically in their sixth decade
of life, would miss the etiologically relevant period of
exposure.

Studies of androgens in prostatic tissue. A better
understanding of the hormonal milieu within the pros-
tate gland and its relationship to circulating hormones
is critical to interpret results from serum-based studies.
However, no epidemiologic studies have investigated
levels of hormones in prostate tissue. The lack of such
studies is due mainly to various methodologic prob-
lems associated with the collection of prostate tissue for
hormone measurements. These problems are further
compounded by the lack of a normal comparison group
for analytic studies. Under most circumstances, ethical
considerations preclude the collection of ‘‘normal’’
tissue from healthy subjects. In addition, because of
the high prevalence of latent prostate tumors (clinically
indolent tumors, stage A1) in elderly men, the prob-
ability of finding histologic evidence of stage A1 focal
tumors among age-matched controls is very high.

Even if the obstacle to collecting optimal tissue
could be overcome, the reliable measurement of hor-
mones in tissue is another hurdle that must be
addressed. For example, each piece of prostate tissue
is likely to differ in texture, the amount of fibromus-
cular component, the proportion of epithelial cells,
and the vascular patterns. Any of these characteristics
can affect androgen concentration, sample processing,
and the recovery of steroids during the extraction
process, which in turn can influence the reproduci-
bility of hormone assays.

Current data on hormone levels in prostate tissue
obtained from clinical studies add little to our under-
standing of the role of hormones in prostate cancer
development because most of these studies analyzed
very small numbers of patients, used less sensitive
and specific assays to measure hormones in tissue,
and failed to address several important methodologic
issues, such as subject selection and comparability of
tissue specimens between subjects. Most of the studies
published before 1990 compared tissue hormone levels
in patients with prostate cancer to those with benign
prostatic hyperplasia. Studies after 1990 focused main-
ly on the impact of finasteride, a competitive 5a-
reductase inhibitor, on serum and tissue levels of
androgens.

Non-AndrogenicHormones and Prostate Cancer

The results of studies that link several non-
androgenic hormones, including estrogens, insulin,
leptin, vitamin D, and pituitary hormones, to pros-
tate cancer are summarized in Table II. The roles of
these non-androgenic hormones in prostate cancer risk
are not well defined. However, they appear to be
involved in androgen biosynthesis and metabolism,
and future studies should investigate the individual
and combined effects of androgens and these hor-
mones on prostate cancer risk. The role of IGFs has
been covered in several comprehesive reviews pub-
lished elsewhere [36,37].

Estrogens and estrogen receptors. The prostate
obtains estrogen from peripheral sources (such as
adipose tissue) and through conversion of testosterone
to estradiol within its own stroma. Within the prostate,
the enzyme estrone sulfatase hydrolyzes estrone sul-
fate (E1S) to estrone (E1), which is readily reduced to
estradiol by stromal 17b-hydroxysteroid dehydrogen-
ase (encoded by the HSD17B gene) [38,39]. Although
estrogen is used as an anti-androgen in the treatment
of prostate cancer, the role of estrogen in prostate
cancer etiology is unclear. Several lines of evidence
suggest that estrogens may enhance prostate carcino-
genesis. First, through the actions of SHBG, estrogens
may participate with androgen in regulating prostate

aOR comparing highest to lowest tertiles.
bResult not statistically significant.
cRisk estimate for 1 standard deviation increase.
dOR comparing highest to lowest quartiles.
eSimultaneously adjusted for testosterone, dihydrotestosterone,
androstanediol glucuronide, estradiol, and SHBG.
fMeans not statistically significantly different between cases and
controls at each of three different time periods before diagnosis.
gMeans comparing cases vs. controls.
hAdjusted for age, education, and anthropometric factors.
iAdjusted for age, education, anthropometric factors, sex
hormones, and insulin-like growth factor-I.
jOR comparing highest to lowest quintiles.
kOR not specified.
lAmong men with lowest quartile of 25(OH)D.
mOR comparing above- to below-median.
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growth and function [40]. Second, estrogens may inter-
act with the SHBG receptor in the stroma of the
prostate gland to activate IGF synthesis and direct
stromal proliferation and, through IGFs, mediate the
response of epithelial cells to androgens [41]. Third,
experimental studies show that induction of prostate
tumors in laboratory rats by administration of testos-
terone is considerably enhanced by the addition of
estradiol, suggesting that estrogens in conjunction with
androgens may stimulate the development of prostate
cancer [42]. Fourth, prenatal exposure to an extremely
low dose of diethylstilbestrol (DES) and other estro-
genic compounds significantly affects mouse prostate
development in vivo and in vitro in the presence of
androgen [43]. Finally, preliminary reports suggest
that offspring of DES-exposed mothers have a higher
risk of prostate cancer [44].

Together, these data suggest that estrogens may en-
hance the risk of prostate cancer. However, Gann et. al.
[28] found that higher levels of serum estradiol were
associated with a 54% reduced risk of prostate cancer
after adjusting for serum levels of testosterone, 3a-diol
G, and SHBG. Thus it is possible that at pharmacologic
doses, estrogens may have anti-tumor action through
their effects on the hypothalamic-pituitary axis, while
at physiologic levels, estrogens, alone or in conjunc-
tion with androgens, may promote tumor growth.

Estrogen receptors (ERs) mediate the biologic effect
of estrogen in the target tissue [45]. It has been
suggested that the concentrations of the two distinct
ERs, ER-a and ER-b, may affect prostate cancer risk
through the influence of the estrogen-ER complex on
androgen receptor concentration [46,47]. Although the
majority of molecular studies have detected ER-a in
stromal cells of the prostate, ER-a is not believed to be
highly expressed in prostate carcinoma. ER-b, on the
other hand, is highly expressed in prostatic epithelium
[45]. Data from a recent study showed that the length
of the CA dinucleotide repeat within the ER-b gene
influences androgen levels in premenopausal women
[48]. Although the effect of ER-b polymorphisms on
androgen levels among men has not been studied,
preliminary data suggest that ER-b may be involved in
the regulation of AR content in the prostate and in
epithelial growth, and thus may serve as a physiologic
regulator of prostatic epithelial growth and differen-
tiation [49].

Sex hormone-binding globulin. Sex hormone-bind-
ing globulin (SHGB) transports androgens and estro-
gens in the circulation. In the only study to report a
definitive positive association between serum levels of
testosterone and prostate cancer, Gann et al. [28] found
no statistically significant association between prostate
cancer risk and testosterone before controlling for

serum levels of SHBG. After adjusting for androgen
and estradiol, Gann et al. found that serum levels of
SHBG were associated with a 54% reduced risk of
prostate cancer [28]. Although it is not entirely clear
whether adjustment for SHBG is the best way to assess
the independent effect of testosterone, the Gann et al.
study demonstrates the importance of examining
several hormonal factors simultaneously.

Recent data suggest that SHBG may have an effect
on carcinogenesis that is independent of its function as
a regulator of the free fraction of androgen and estro-
gen. For example, SHBG mediates steroid hormone
signal transduction at the plasma membrane, there-
by allowing certain steroid hormones to act without
entering the cell by interacting with SHBG membrane
receptors [50].

In addition, estradiol can activate the androgen
receptor by using SHBG as an intermediate [51]. How-
ever, this pathway is complex and not well understood,
and the potential independent effects of SHBG have not
been investigated fully. Because several factors, such
as obesity, estrogens, testosterone, thyroid hormones,
insulin, leptin, and IGF-I [52–55], in addition to
testosterone, affect circulating levels of SHBG, future
studies should measure SBHG along with several
other hormones and evaluate its independent effect on
prostate cancer risk.

Insulin and leptin. Serum levels of insulin and leptin
are associated with obesity and body fat distribution,
two putative risk factors for prostate cancer [56,57].
The roles of insulin and leptin in prostate carcino-
genesis have been investigated in three case-control
studies [58–60]. Two of these studies [58,59] reported
no association of serum levels of leptin with prostate
cancer risk, while the larger, nested case-control study
from Sweden found a positive association [60]. In
addition, a recent clinical survey [61] showed that
higher plasma levels of leptin were associated with
larger (>0.5 cm3) prostate tumor volumes. One of the
two case-control studies investigating the role of insu-
lin in prostate cancer reported a positive association
with serum levels of insulin [59]. This association was
independent of overall and abdominal obesity as well
as serum levels of IGFs, sex hormones, and leptin.

The hypothesis that insulin and leptin may have a
role in prostate cancer etiology is biologically plausible
and should be evaluated further in prospective studies.
In addition to stimulating cell growth through binding
to its receptor, insulin may affect prostate tumorigen-
esis through several potential pathways, including the
obesity-sex-hormone pathway, the IGF pathway, the
PI3K-Kinase (phosphatidylinositol 30-kinase-85) sig-
naling pathway, and the apoptotic pathway [62–71].
In the obesity-sex-hormone pathway, insulin increases
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the transcription of CYP17 (the gene encoding the
enzyme that is critically involved in the biosynthesis of
testosterone) and CYP19 (the gene encoding aroma-
tase, an enzyme that converts testosterone to estradiol)
and decreases the synthesis of SHBG [62–65], thereby
increasing the bioavailability of free testosterone for
uptake by the prostate gland. Because insulin and IGF
have 50% amino acid homology (and their receptors
are 60% homologous to each other), insulin can bind to
the type I IGF receptor and mediate growth-promoting
effects [66–68]. Insulin can also inhibit transcription
of IGF binding protein 1, thereby increasing unbound
circulating IGF-1 [68]. In recent studies, higher serum/
plasma levels of IGF-1 have been linked to an increased
risk of prostate cancer [36,37]. Insulin, after binding to
its receptor, can activate the insulin receptor substrate,
which in turn can activate a cascade of post-receptor
events involved in cell survival and proliferation in
the PI3-K and apoptotic pathways [69–71]. Although
epidemiologic evidence for the association between
insulin and prostate cancer is preliminary, the roles
of insulin and leptin need to be clarified further be-
cause they may provide the missing link between the
increased risk of prostate cancer and westernized
cultures.

Vitamin D. Vitamin D is a steroid hormone synthe-
sized primarily in skin in response to sunlight exposure.
Ecologic studies that demonstrated a correlation be-
tween increased sunlight exposure and decreased
prostate cancer mortality provided the first link
between vitamin D deficiency and prostate cancer
[72]. Vitamin D and its analogs have potent anti-
proliferative, pro-differentiative, and pro-apoptotic
effects on prostate cancer cells in vitro [73]. In addition,
vitamin D inhibits prostate tumor growth in vivo [74].
However, despite the strong and consistent laboratory
evidence linking vitamin D to prostate cancer, five
prospective studies investigating serum levels of
vitamin D and prostate cancer risk have produced
inconsistent results [75–79] (Table II).

Pituitary hormones. Gonadotropins, such as luteiniz-
ing hormone (LH), follicle-stimulating hormone, and
prolactin, are secreted by the pituitary and are in-
volved in testosterone production and its feedback
control. Gonadotropin-releasing hormone agonists are
used to treat prostate cancer [80]. Gonadotropins are not
routinely measured in epidemiologic studies because
their levels are influenced by pulsatile secretion and
diurnal variation, which complicates the assessment of
their roles in prostate cancer. Data from one study has
suggested that higher serum levels of both LH and
testosterone may be associated with an increased risk
of prostate cancer risk [24]. There is very little epi-
demiologic data on the role of prolactin in prostate

cancer [24,28,33,81], despite the observation that pro-
lactin mediates the entry of testosterone into prostatic
cells in vitro and in vivo [82]. The biological relevance
of gonadotropins to testosterone suggests that their
roles in prostate cancer need to be clarified in future
studies.

Genetic Susceptibility

Recent epidemiologic stuies have begun to focus on
variants of the genes encoding enzymes involved in
steroid biosynthesis and metabolism and receptor pro-
teins involved in the androgen metabolic/regulation
pathways. Although promising data from these studies
are accumulating at a remarkable pace, they are still too
sparse to support a role for a specific gene in prostate
cancer risk (Table III). Data in the current literature
suggests that the frequencies of some polymorphisms
in certain genes differ among different racial and
ethnic groups. However, whether these genetic var-
iants can help explain part of the large difference in
prostate cancer risk between these populations awaits
further clarification.

Genes involved in androgen metabolism and reg-
ulation. The genes involved in androgen metabolic
pathways are shown in Figures 1 and 2. Ross et al. [83]
first proposed a polygenic model to help explain the
racial/ethnic difference in prostate cancer risk. That
model triggered a series of studies that investigated
the involvement of genes encoding cytochrome P450
17a-hydroxylase (CYP17), aromatase (CYP19), 5a-
reductase (SRD5A2), 3b-hydroxysteroid dehydrogen-
ase (HSD3B2), and androgen receptor protein (AR) in
prostate cancer. Several more candidate genes are
discussed in this review. With newly available tech-
nology, this list will continue to expand.

CYP17. The enzyme cytochrome P450c17a-hydrolase,
which is encoded by the CYP17 gene (located on
chromosome 10q24.3), catalyzes critical steps in the
biosynthesis of testosterone. A single base pair change
(T to C) in the 50-untranslated region of the CYP17
gene (A2 allele) has been linked to male pattern bald-
ness [84], a putative risk factor for prostate cancer.
Interestingly, the A2 allele (C nucleotide) of CYP17 is
also associated with higher levels of serum estrone
and an increased risk of breast cancer compared to
the A1 allele (T nucleotide) of CYP17 [85]. However,
the relationship between CYP17 and prostate cancer is
inconclusive. Of the nine epidemiologic studies that
have examined the role of CYP17 in prostate cancer
[86–94], four found a positive association with the A2
allele [86,88,91,93], while two found elevated risk asso-
ciated with the A1 allele [87,89]. Two studies with data
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on circulating levels of hormones found no correlation
between CYP17 polymorphisms (either the A1 or A2
alleles) and serum levels of testosterone and 3a-diol G
[90,96]. These results suggest that the effect of CYP17
on prostate cancer, if any, is likely to be small.

CYP19. The CYP19 gene (located on chromosome
15q21.1) encodes for the key steroidogenic enzyme
aromatase that catalyzes the irreversible conversion of
androstenedione to estrone and testosterone to estra-
diol. Aromatase is present in the gonads and in the
extragonadal organs and tissue, including the prostate
and adipose tissue. In men, conversion of androgen to
estrogens occurs mostly in the adipose tissue. Two
studies have investigated the role of CYP19 in prostate
cancer [94,95]. One found a positive association with
the tetranucleotide repeat (TTTA)n in intron 4 of the
CYP19 gene [94] and the other reported that poly-
morphism of ARG264Cys (the C to T substitution in
exon 7 resulting in a single amino acid substitution
from Arg by Cys at codon 264) [95] was associated
with a non-significant 72% increase in the risk of
prostate cancer.

SRD5A2. Cross-sectional surveys showed that African
American and Caucasian men have higher serum levels
of 3a-diol G than native Japanese men [97]. In addition,
Chinese men have a much lower chest hair density
(a surrogate measure of 5a-reductase type 1 activity)
than western men [98]. Because serum levels of 3a-diol
G and body hair reflect steroid 5a-reductase activity,
these observations led to the hypothesis that population
differences in 5a-reductase activity and/or the poly-
morphisms of the SRD5A2 gene, which encodes 5a-
reductase, may be related to the development of pros-
tate cancer and may contribute to part of the racial/
ethnic differences in risk [83].

More than 22 mutations, including 10 single amino
acid missense substitutions, have been reported for
SRD5A2 [99]. Four of these mutations—A49T (a sub-
stitution of threonine for alanine at codon 49), V89L
(a substitution of leucine for valine at codon 89), R227Q
(a substitution of glutamine for arginine at codon 227),
and a (TA)n dinucleotide repeat—have been inves-
tigated for their association with prostate cancer in
twelve epidemiologic studies that have produced
mixed results (Table III) [86,94,100–108]. Of the seven
studies investigating the A49T marker in the SRD5A2
gene, two [103,105] reported a statistically signifi-
cant association between the A49T mutation and pros-
tate cancer, one reported that the A49T genotype was
associated with more aggressive prostate cancer [104],
while others did not find any association [94,106–108].
Nine studies investigated the association between the
V89L marker and prostate cancer risk and four exam-
ined the role of (TA)n repeat length in prostate cancer,

with most of the studies reporting no association with
these polymorphic markers. The R227Q mutation,
which is related to male pseudohermaphroditism,
has been detected only in Asians. The only study
investigating the role of the R227Q mutation found no
association with prostate cancer risk [106].

The inconsistent findings for the SRD5A2 markers
in various studies are largely due to the low frequency
of certain mutant alleles of some markers in the
SRD5A2 gene. For example, other than the V89L
mutation, the frequency of the mutant alleles in
various markers (including A49T and R227Q) is less
than 5%, limiting the power of detection. Larger
studies in various racial/ethnic groups are needed to
further elucidate the hypothesis that polymorphism
of the SRD5A2 gene is associated with prostate cancer
risk. Although epidemiologic data on the role of
SRD5A2 in prostate cancer are inconclusive, the
aggregate of the data suggests that relative to western
men, Asian men have a higher prevalence of the LL
genotype of the V89L marker and that the LL genotype
is associated with lower serum levels of 3a-diol G
[96,106,108].

HSD3B and HSD17B. Incomplete activation or slower
degradation of DHT within the prostate can lead to the
accumulation of DHT and, perhaps, increased andro-
genic action. Thus, enzymes that inactivate DHT may
be of etiologic importance for prostate cancer. As shown
in Figure 2, at least three enzymes, 17b-hydroxysteroid
dehydrogenase type III (encoded by the HSD17B3
gene), 3a-hydroxysteroid dehydrogenase (encoded by
the HSD3A gene), and 3b-hydroxysteroid dehydro-
genase (encoded by the HSD3B gene located on chro-
mosome 1p13.1), are involved in the metabolism of
DHT within the prostate [109–114]. Polymorphisms in
these genes, such as a dinucleotide repeat polymor-
phism in the HSD3B gene [113], have been reported.
Although epidemiologic investigations of these poly-
morphisms are actively underway, no data on the
risk of prostate cancer and these genes have been
published.

AR and AR coactivators. The androgen receptor is
expressed in all histologic types and stages of prostate
cancer [115]. Numerous somatic mutations in the AR
gene have been reported among prostate cancer
patients enrolled in clinical studies. Most of these
mutations have been detected in tumor tissue of late-
stage prostate carcinoma, with consistent findings
showing that somatic mutation of the AR gene is
involved in the progression and aggressiveness of
prostate cancer [115].

Fifteen studies have investigated the role of CAG
(coding for polyglutamine) and GGN (coding for
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glycine) repeats in prostate cancer and have produced
inconsistent results (Table III) [94,95,116–131]. For
example, four studies showed that men with a shorter
CAG repeat length were at higher risk of prostate
cancer [118,119,126–128], whereas others did not
confirm these findings [94,120,125,130]. In all of these
studies, however, the length of CAG repeats corre-
sponded to racial variation in prostate cancer risk; that
is, African Americans, who have a high risk of prostate
cancer, had a shorter CAG repeat length, Caucasians
had an intermediate repeat length, and Asian men,
who have a much lower risk of prostate cancer, had a
longer repeat length. Laboratory studies have shown
that a shorter CAG repeat length is associated with an
increased transactivation of AR [18]; however, the
biological role of GGN repeats is less clear. Five
studies that measured GGN repeats found that men
with a GGN repeat length other than 23 had an
increased risk of prostate cancer [116,118,120,121,128].

Two other polymorphisms in theAR gene have been
investigated for their associations with prostate cancer:
the R726L mutation (a substitution of leucine for argi-
nine at codon 726) in exon S of the AR gene and the
Stu I single nucleotide polymorphisms, designated the
S1 and S2 alleles, which correspond to the absence and
presence, respectively, of a diagnostic cleavage site for
the Stu I restriction endonuclease. The R726L mutant
allele is in linkage disequilibrium with the long CAG
repeat length in the AR gene, in that all subjects
with the R726L mutant allele have a 26 CAG repeat
length (the median CAG repeat length in Caucasian
populations ranges from 20 to 22) [129]. The R726L
polymorphism, which alters the specificity of the AR
protein, was found at higher frequency than other
alleles among prostate cancer patients in two clinical
surveys, and a separate study linked the R726L
mutation to an almost 6-fold increased prostate cancer
risk in Finnish men [129]. To date, the R726L mutation
has only been reported in Finnish populations. The S1
Stu I allele was associated with a 3-fold higher prostate
cancer risk among African Americans under the age of
65 years. In addition, AR polymorphisms (both CAG
repeat length and the S1 Stu I allele) have been linked
with male pattern baldness [132–135], a clinical con-
dition that has been linked to higher levels of DHT and
prostate cancer risk.

AR coactivators enhance transactivation of AR se-
veral fold (19) and therefore potentially increase the
risk of prostate cancer. One AR coactivator is encoded
by the AIB1 (Amplified in Breast Cancer 1) gene,
which has two distinct CAG trinucleotide repeats.
Two epidemiologic studies have investigated the role
of AIB1 in prostate cancer: one found a positive
association between AIB1 CAG repeat length and
prostate cancer [136], and the other reported no

association [137]. Future studies should investigate
the combined effects of AR and AR coactivators in
prostate cancer risk.

Estrogen receptor. One study in Australia investi-
gated the XbaI and PvuII markers in the estrogen
receptor gene and reported a 5-fold prostate cancer
risk among men homozygous for the ER XbaI
genotype and a shorter CAG repeat length in the
androgen receptor gene [95].

Limitations of Studies of Genetic Polymorphisms

The molecular characterization of genetic markers
provides an opportunity to examine disease at the cel-
lular level. Compared to serum-based studies, this
approach has two distinct advantages. First, molecular
assays usually, but not always, produce more quali-
tative (categorical) results with higher reproducibility
than the continuous data typically produced by sero-
logic assays. Second, unlike serologic markers in cross-
sectional case-control studies, genetic susceptibility
status (i.e., genotype) is not affected by the presence or
process of disease or by other exposures that may
change over time.

Despite these advantages, studies of genetic poly-
morphisms have their own limitations. First, most of the
current studies have limited statistical power because
fewer than 500 subjects are typically analyzed and the
allele frequency of certain markers within the study
population is less than 5%. Second, because most
current studies also lack the power to evaluate the
combined effect of several genes, they cannot produce
a comprehensive picture of genetic predisposition and
cancer risk. Third, risk estimates can be influenced by
confounding, by selection of study subjects (such as
inclusion of surviving cases only), by multiple
comparisons of the enormous number of allelic
variants (including a large number of SNPs and
mutations in several markers of the same gene), and
by linkage disequilibrium.

Finally, most current molecular epidemiologic stu-
dies investigate common polymorphisms in specific
genes without considering the functional consequences
of those polymorphisms, making the results of such
studies difficult to interpret. For example, a particu-
lar association between a specific genetic marker and
prostate cancer risk may be mechanistically significant
or may merely reflect linkage of this marker to another
truly causative marker. These kinds of uncertainties
may explain at least some of the often-contradictory
outcomes of molecular epidemiologic studies reported
in the literature. The recent proliferation of studies on
genetic polymorphisms will result in a flood of genetic
data and many false positive associations. We suggest
that care be taken in the interpretation of these data.
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FUTUREDIRECTIONS

Prostate cancer is a heterogeneous disease (in terms
of biological behavior) and it is likely that a more com-
plete picture of its etiology related to hormones will
require an understanding of the complex biological
interactions among hormones, hormone-metabolizing
genes, receptor proteins, and exogenous factors. Thus,
an array of studies is needed to address these issues
in the future. These include methodologic studies of
tissue hormone levels, cross-sectional studies conduct-
ed in several racial/ethnic populations simultaneously
with a common protocol, and additional serum-based
nested case-control studies with more sensitive and
specific assays, such as liquid chromatography-mass
spectrometry [138], that are large enough to investi-
gate multiple hormones and hormone metabolism
genes simultaneously. Figure 4 summarizes various
approaches needed to address these issues.

Studies of ProstateTissue

To help understand further whether circulating
levels of hormones reflect androgenic action within the
prostate, well-designed rigorously conducted method-
ologic studies should be carried out to collect high
quality snap-frozen normal prostate tissue for the
measurement of tissue hormones, enzymatic activities,
and receptor proteins so that an overall index of andro-
genicity in the prostate can be derived. Because such
studies are logistically challenging, meticulous atten-
tion should be paid to details related to establishing
the infrastructure for subject selection, tissue pro-
curement and collection procedures, preservation of
samples, and validation of hormone assays. In addi-
tion, quality control procedures should be implement-
ed to evaluate intra-prostatic as well as intra- and
inter-assay variations in tissue hormones. Once tissue
hormone assays have been validated, it will be essen-

Fig. 4. Suggested futureresearchonhormones andprostate cancer.A summaryof anarrayofmethodologic andanalytic studies to further
clarify the role of hormones in prostate cancer.
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tial to assess whether smoking, alcohol use, body size,
and lifestyle factors affect tissue levels of hormones.
Racial or ethnic differences in tissue levels of hormones
should also be evaluated after taking into account
lifestyle and other potential confounding factors. An
ongoing study is currently evaluating these issues
(Hsing AW, Hemstreet G, Levine P, Zolfghari L,
Veneroso CC, Stewart K et al., unpublished data).

Correlations between serum and tissue levels of
hormones would provide insights into whether intra-
prostatic metabolism is more relevant to the etiology
of prostate cancer than serologic measurements. We
therefore recommend that in these types of methodo-
logic studies, fasting blood samples be collected on the
same day the tissue is procured so that circulating
levels of hormones can be measured and compared to
tissue levels. If large enough tissue samples can be
collected, metabolism studies should be carried out to
determine the ratio of testosterone to DHT in tissue,
which is thus far the best possible measure of 5a-
reductase activity in the prostate. Ultimately, it would
be useful to know whether there are any racial or
ethnic differences in the serum-tissue correlation
because the identification of such differences would
validate the 5a-reductase hypothesis.

It would also be useful to correlate tissue levels of
hormones with genetic variants to provide insights
into the functional significance of these polymorphic
markers. To do so, peripheral lymphocytes or buccal
cells should also be collected in the same studies that
procure prostate tissue for hormone assays. Such cells
could be used for the extraction and analysis of
genomic DNA to determine whether tissue hormone
levels (phenotypes) correlate with genetic polymorph-
isms (genotypes) of hormone-metabolism genes.

Studies ofHormone Levels in Serum

Because it is not feasible to compare tissue hor-
mone levels in case and control subjects or to measure
tissue hormone levels at baseline in cohort studies,
future studies will continue to rely on serum-based
assays of hormone levels. Nevertheless, efforts should
be made to minimize variation in assays and sampling
in future studies. These measures should include the
use of more sensitive and specific assays to minimize
measurement error and characterize hormonal status
more accurately in study subjects; the simultaneous
measurement of several hormones in the same study
to provide a more complete hormonal profile of each
study subject so that the net effect of each hormone can
be assessed; the standardization of time of blood collec-
tion so that diurnal and seasonal variation in hormone
levels among study subjects can be minimized; and
the use of a large enough sample size (preferably several

hundred case-control pairs from prospective studies)
to yield sufficient statistical power. In addition, it is
important to have a better understanding of factors
that affect circulating levels of hormones so that
appropriate statistical analyses can be conducted to
control for confounding. For example, methodologic
studies examining relationships between epidemiolo-
gic factors, such as anthropometry, physical activity,
and diet, and the interrelationships among hormones,
including androgens, estrogens, IGFs, SHBG, leptin,
and insulin, should be carried out to provide critical
data to help refine the analytical models in the statis-
tical analyses. Because the validity of the results hinges
on the quality of hormone assays, we cannot stress
enough the importance of optimizing hormone mea-
surements in future studies. Imperfect as they may
be, serum levels of hormones, if measured accurately,
presumably reflect the combined effects of genetic
polymorphisms as well as other genes and exogenous
factors.

A better understanding of how serum hormone
levels vary in different racial and ethnic populations
may shed light on the etiology of prostate cancer.
In addition, studies that compare the levels of circulat-
ing hormones between low- and high-risk populations
in various decades of life may be useful to identify
critical time periods in life that are etiologically rele-
vant to prostate cancer risk. Previous studies have
suggested that in utero exposure to testosterone may
explain the excess prostate cancer risk in African
American men, because levels of testosterone in preg-
nant black women are higher than those in pregnant
white women [139]. Comparisons of hormone levels
in cord blood from various racial/ethnic groups
may provide additional insights into this hypothesis.
These suggested methodologic studies, although cross-
sectional in nature, should be guided by sound epide-
miologic principles and include probability samples
from each population in order to provide solid data
to aid in the interpretation of results from future
prospective studies.

Studies ofHormone-RelatedGenes,Gene-Gene
andGene-Environment Interactions

Although linkage studies have identified several
susceptibility genes with high penetrance in prostate
cancer, including—HPC1, PCAP, HPCX, CAPB, and
HPC20 [140–149], these genes have relatively low
(< 10%) frequency and are thought to account for only
8�10% of the prostate cancer cases (hereditary cases)
in the population. Obviously, differences in these rare
genetic loci are not likely to explain the large differ-
ences in prostate cancer risk between different racial/
ethnic groups. In contrast, allelic variants in low-
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penetrance cancer-susceptibility genes (i.e., common
polymorphisms) involved in androgen regulation and
metabolic pathways such as the ones reviewed earlier,
although having much lower impact on cancer risk,
may affect a larger fraction of the population. Thus,
they may potentially account for a larger proportion of
prostate cancer in the general population and explain
part of the large racial/ethnic difference in risk.
However, it is unlikely that a single polymorphism
will have a profound effect on androgen levels or
prostate cancer risk because genes tend to act in
concert with other genes. The current view is that
alterations in multiple genes, rather than in a single
gene, may affect intraprostatic androgenicity, thus
heightening prostate cancer risk in a subset of indi-
viduals. Therefore, with new technology a set of
common polymorphisms of several susceptibility
genes involved in androgen metabolism or signal
transduction pathways (Figure 2), should be assessed
simultaneously in a large number of samples so that
the combined effects of multiple markers in the same
gene or multiple gene (gene-gene interactions) on
prostate cancer risk can be evaluated.

Furthermore, since prostate cancer is likely to result
from a complex interplay of genetic and environment-
al factors [148], and since the expression of genetic
traits is likely to be influenced by exogenous factors,
ultimately large studies (several thousand cases) with
high-quality biological samples in well-characterized
populations should be conducted to investigate inter-
actions between genes and the environment in order to
provide a more complete view of genetic predisposi-
tion and to identify susceptible subgroups for early
detection.

SUMMARY

In summary, although many pieces of the puzzle in
our understanding of prostate cancer are still missing,
promising clues are emerging. With newly available
technology, exposure assessment and disease classifi-
cation can be refined further for hypothesis testing. A
wealth of new data, including hormone levels in various
biological samples, a number of genetic polymorph-
isms, and somatic alterations, will soon become avail-
able and may reveal more specific exposure-disease
relationships. The aggregate of these data will enhance
our understanding of hormonal carcinogenesis in
prostate cancer and help solve the puzzle. Such efforts,
however, require an interdisciplinary approach that
combines the efforts of investigators across several
disciplines, including epidemiology, urology, pathol-
ogy, biochemistry, endocrinology, genetics, and mole-
cular biology. To break new ground in the etiology of
prostate cancer, the next generation of studies should

be large-scale well-executed epidemiologic studies of
sound design and sufficient sample size that collect and
analyze high-quality biologic samples. Such studies
will provide unique opportunities to incorporate state-
of-the-art techniques to test emerging hypotheses in a
timely fashion.
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